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ABSTRACT

In this paper, we apply genetic algorithms to reconstruct Gielis
surfaces from 3D data sets. The Levenberg-Marquardt method
has been used as a standard for superquadrics recovery and
has recently been extended to Gielis surfaces. Unfortunately,
the non homogeneity of the Gielis surface parameters requires
additional heuristic to determine discrete parameters such as
the number of symmetries. Genetic algorithms overcome this
issue and provide a more general framework for Gielis surface
reconstruction.

Index Terms— Geometric modeling, surface reconstruc-
tion, Gielis surfaces, superquadrics, supershapes, genetic al-
gorithms

1. INTRODUCTION

Several efficient deterministic methods for superquadricsre-
covery have been proposed in the past two decades [1–4]. A
recent extension with rational and irrational degrees of sym-
metry, namely the supershapes or Gielis surfaces, has been
proposed in [5]. Compared to previous work in [6], where we
extended deterministic superquadric reconstruction methods
to Gielis surfaces, the focus of this paper is a more detailed
study of reconstruction techniques for individual supershapes
using genetic algorithms. The work presented in this paper
belongs to a larger framework of reconstruction of complex
surfaces represented as Boolean operations between globally
deformed supershapes. Such objects can be represented by
potential functions that are built using R-function [7]. The
minimization of such functions using deterministic methods
raises several difficulties, such as segmentation, symmetry
detection, and heuristic choices. The original contributions
of this paper are an extension of existing supershapes recov-
ery techniques using genetic algorithms that handle the detec-
tion of the symmetry number similarly to the other parame-
ters in a unified framework. The structure of the paper is as
follows: Section 2 presents Gielis surfaces and an associated
cost function to be minimized, Section 3 is dedicated to the
Levenberg-Marquardt algorithms and genetic algorithms. We
present and discuss our results in Section 4. We then present
our conclusions and future work.
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Fig. 1. Supershapes with various shape coefficients and sym-
metry numbers. a)m = 5, b) m = 6, c) m = 2, and d)
m = 8.

2. GIELIS SURFACES AND COST FUNCTION

Gielis defines the parametric radius of a superpolygon as:
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with a, b, andni ∈ R
+. Figure 1 presents examples of super-

shapes for various shape coefficients.
For a unit supershape (a = b = 1) andm andM natural

numbers, we have defined a radial implicit function as:

f (x, y, z) = 1 −
1

r2 (φ)

√

x2 + y2 + z2

cos2 φ (r2
1 (θ) − 1) + 1

, (2)

The problem of 3D supershape recovery can be seen as
a minimization problem,i.e. the determination of the para-
meters set, notedΛ = {t, r, s, ni,m,Ni,M}, i = 1, 2, 3,
which minimizes an error of fit notedEOF (Λ) for a given
data set. Parameterst, r, ands correspond respectively to the
translation, the rotation, and the scale parameters. Parameters
ni, Ni, i = 1, 2, 3, m, andM correspond to the parameters
of the recovered supershape. Following the conclusions pre-
sented in [1–4], we defined in [6] a cost function to measure
the error of fit defined as:

EOF (Λ) = sxsysz

n
∑
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(F (Pi))
2 . (3)

The functionF (P ) corresponds to the supershape func-
tion proposed in equation 4 and is defined in the general case
of a translated, rotated, and scaled supershape by:



F (x, y, z) = f
(
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)

, (4)

with T , R, andS being the transformation matrices that
correspond to the translationt, the rotationr and the scales.

3. RECONSTRUCTION ALGORITHMS

3.1. Levenberg-Marquardt algorithm

Levenberg-Marquardt (LM) method has been used as a stan-
dard for superquadrics recovery [1–4], please refer to [9] for
explanations concerning its implementation. During an iter-
ative process, the recovered supershape evolves to obtain a
minimal value of the suitable cost function. At each iteration,
a new step in the parameter space is computed and requires
the computation of all the partial derivatives of the cost func-
tion EOF (Λ), which raises three main issues. First, Gielis
surfaces are not differentiable everywhere because of the ab-
solute values in the parametric definition of the radius. Fortu-
nately, this problem arises only when points have specific an-
gular coordinates in the supershape referential, which rarely
happens in practice. For such points, the partial derivatives
of the cost function cannot be computed and are set to zero,
which is equivalent to ignore these points in the reconstruc-
tion process. Second, the equation 2 requires the symmetry
parametersm andM to be natural numbers. Therefore, equa-
tion 3 is not differentiable regarding parametersm andM ,
which means symmetries have to be handled separately from
the other parameters. In previous work, we used a heuristic
based on sweeping around the supershape inertia axes to effi-
ciently determine symmetry numbers. When symmetries are
not correctly detected, symmetries are set to 4 and our algo-
rithm may converge to a local minimum with an important
error of fit. The third issue concerns the non unicity of the pa-
rameters for a same shape, which leads to difficulties to assert
the direction of each step of the algorithm and its convergency
to numerous local minima.

3.2. Genetic Algorithms

Genetic algorithms (GAs) are stochastic search methods that
have been successfully applied in many optimization prob-
lems. The fundamental principles of GAs were first presented
by Holland [10]. A GA randomly generates an initial popu-
lation. Elements of the population are coded as a string of
symbols, known as genes. A chromosome is composed of
genes, and represents a solution to the optimization problem.

At each iteration of the algorithm, called a generation,
the chromosomes in the current population are evaluated us-
ing the measure of fitness that corresponds in our case to
the functionEOF (Λ) defined in equation 3. Genetic op-
erators control the evolution of successive generations. At

(a) Crossover
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Fig. 2. Illustration of the genetic operators Crossover and Mu-
tation.

each generation, the best solution corresponds to the chromo-
some with the smallest error of fit. The two basic genetic
operators are crossover and mutation: the crossover operates
on two individuals at a time and generates two offsprings by
combining random genes from both parents. The mutation is
a background operator, which produces spontaneous random
changes in various individuals. Figure 2 illustrates the behav-
iour of both genetic operators.

A genetic algorithm proceeds as follows:

1. Create initial random generation

2. For each individual, evaluate its fitness applying Eq. 3

3. Create next generation using crossover and mutation

4. Loop until a convergency test is not satisfied

4. RESULTS AND DISCUSSION

Results presented in this paper on figures 3, 4, and 5 have
been generated using a population of 500 chromosomes. In
most cases, the algorithm converges after 200 generations,
which takes between 5 to 10 minutes and requires a memory
of 25Mb.

To verify that the GA converges to the optimal solution,
we applied it to several types of supershapes, similarly to the
LM method presented in [6]. We verify its convergency for
synthetic unit supershapes, as illustrated in Figure 3. We then
extended the dimension of the parameters space with scales,
translations and rotations, as illustrated in Figure 4. Results
for incomplete data are presented in Figure 5.

We verify that GAs can be used to recover Gielis surface
parameters. Naturally, their convergency is slower than Lev-
enberg Marquardt algorithm and they requires more memory



figure n1 n2 n3 N1 N2 N3 EOF (Λ)

3(a) 50/1895 50/1845 50/1886 2/1918 2/3 2/16 0.005
3(b) 100/76.2 100/76.2 100/76.2 100/76.2 100/76.2 100/76.2 0.0007
3(c) 0.5/0.508 0.5/0.508 0.5/0.508 0.5/0.508 0.5/0.508 0.5/0.508 2.017
3(d) 1000/1086 250/268 250/288 1000/360 250/90 250/90 0.0008

Table 1. Recovered shape parameters for objects in Figure 3. Notation: Initial / recovered values.

figure n1 n2 n3 N1 N2 N3 EOF (Λ)

4(a) 50/56.6 50/55 50/57.6 50/56.6 50/56.6 50/55 0.2
4(b) 50/170 50/162 50/171 2/1679 2/1868 2/3.6 0.08
4(c) 1000/1397 250/366 250/284 1000/638 250/134 250/132 0.68
4(d) 2/1215 2/7 2/34 50/143 50/143 50/141 0.26

Table 2. Recovered shape parameters for objects in Figure 4. Notation: Initial / recovered values.

(a) (b) (c) (d)

Fig. 3. Reconstruction of canonical supershapes

(a) (b) (c) (d)

Fig. 4. Reconstruction of translated, rotated and scaled super-
shapes

to handle the population of several supershapes. Neverthe-
less, using GA avoids the fundamental problem of the sym-
metry detection and allows to handle all the parameters in a
same manner.

Compared to the work proposed in [6], we observe the re-
sults obtained by GA and LM algorithms share some similar
properties. Some results illustrate that a supershape can be

(a) 100% of the
data

(b) 80% (c) 40% (d) 25%

Fig. 5. Reconstruction of incomplete data

represented by completely different parameters sets, as illus-
trated by the results related to Figure 5(a). Orientation pa-
rameters can also be different. Actually, it corresponds to
several combinations of rotations ofπ or π/2, which leads
to important changes in the shape parameters. It can also be
seen as a permutation between the two generating superpoly-
gons, which is equivalent to axes permutation, as illustrated
by the results shown on Figure 4(b). Numerical values of
the recovered parameters corresponding to the results shown
on Figures 3 and 4 are summed up in tables 1, 2, and 3, re-
spectively. The data in Figure 5 have been generated for a
unit cube and have been degraded to represent an incomplete
cube. Once again, we observe that the cube is correctly re-
constructed and the computed shape coefficients are differ-
ent from original ones as mentioned in table 4. In terms of
computational complexity, our GA is slower than the LM ap-
proach used in [6]. It is due to the very nature of this algo-
rithm, because LM is a deterministic algorithm while GA is
stochastic. At each iteration, the LM method requires one
evaluation of the cost function and its gradient, whereas GA
requires as many evaluations as the total number of chromo-
somes in the considered population. Considering a population
of n chromosomes is therefore approximatelyn times slower
than using LM method. Nevertheless GA can handle cases
the LM method cannot such as variations of the symmetries.

5. CONCLUSIONS AND FUTURE WORK

Exploration of the parameters space for the reconstructionof
Gielis surfaces is still a challenging and open problem. Using
deterministic algorithm can be an efficient solution if symme-
tries can easily be determined. Nevertheless, using GAs has
a major advantage over LM method since all the parameters,
such as the shape, the position, and the symmetries, are han-
dled in a unified framework.

It is also important to keep in mind that real world objects
may not be exactly representable by Gielis surfaces, which
leads to consider a larger representation model using Boolean



figure tx ty tz φ θ ψ sx sy sz EOF (Λ)

4(a) 1/1 4/4 -1/-0.9 1/1 -1/2 -3/3 6/6 3/3 5/5 0.2
4(b) 1/1 4/4 -1/-1 1/1 1/2 -3/0.1 6/6 3/3 5/5 0.08
4(c) 1/1 4/4 -1/-0.9 1/1 -1/2 -3/6 6/6 3/3 5/5 0.68
4(d) 1/1 4/4 -1/-0.9 1/1 -1/2 -3/3 6/6 3/3 5/5 0.26

Table 3. Recovered translation, rotation, and scale parameters for objects in Figure 4. Notation: Initial/ recovered values.

figure n1 n2 n3 N1 N2 N2 EOF (Λ)

5(a) 1000/33.95 1000/33.95 1000/33.95 1000/473.37 1000/851.17 1000/383.47 0.23
5(b) 1000/1433.95 1000/707.6 1000/1468.6 1000/800 1000/900 1000/800 0.04
5(c) 1000/41.48 1000/41.48 1000/41.48 1000/800 1000/900 1000/789.42 0.16
5(d) 1000/1557 1000/1755.09 1000/1083 1000/1596.96 1000/1407.49 1000/1521 0.19

Table 4. Recovered supershape parameters for the incomplete data of Figure 5. Notation: Initial/ recovered values.

(a) Reconstruction of 3 cubes (b) Reconstruction of 9
spheres

Fig. 6. Reconstruction of several supershapes using genetic
algorithm

operations and global deformations. In such a global model,
the dimension of the parameters space becomes very impor-
tant and leaves very few hope for the development of a direct,
deterministic, and general reconstruction algorithm. Further-
more, the deterministic method proposed in [6] strongly relies
on a correct segmentation and may converge to local minima
with as important error of fit in cases of incorrect segmenta-
tion. On the other side, using GAs can be an alternative to
obtain a acceptable initial result that could be used as an ini-
tial guess for a generalized LM method.

The extension of this work to the recovery of several Gielis
surfaces is currently under consideration. R-functions are
used to combine supershapes through Boolean operations. The
genetic algorithm is slightly modified to handle the global op-
timization of a R-function of Gielis surfaces (extension ofthe
chromosome size to represent the parameters of several super-
shapes, as well as the number of supershapes and the Boolean
operations). Some preliminary results are shown on Figure 6.

This work belongs to the research dedicated to individual
Gielis surfaces reconstruction using genetic algorithm. Sev-
eral research directions are currently investigated and include
the simplification of the parametric radius in equation 1 into
a rational fraction to simplify and reduce the number of com-
putations, the development of more suitable cost functions

for a better discrimination between Gielis surfaces, and more
generally, the adaptation and the application of the numerous
optimization techniques (deterministic and stochastic) for the
recovery of large, complex, noisy 3D data sets.
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