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ABSTRACT Cincinnati children's research foundation has developed a
Liposomes are vesicles used in several domainsique compositionfor modulation of highly active grow-
medicine, biology and biochemistry. The aim of this pang cell. The complex is formed by a fusogenic protein or
per is to show how Dupin cyclides (Algerbraci surfacgseptide derived from prosaposin associated with a lipo-
of degree 4) can be used to get a 3D representation oflime which may also contain a drug material in a phar-
posomes, which allows easy visualization and may faaihaceutically acceptable carrier to improve the delivery of
itates the simulation of the various manipulation one céimat material across the biological membrane.

need to do with liposomes. In 1990, U. Seifert [18] prooved that, besides the

Dupin cyclides was introduced time in 1822 by thgpheres and surfaces which are characterized only by con-
French mathematician Pierre-Charles Dupin. Althougiihuous deformations, there are blisters of toric kind: the
they have a number of interesting geometric propertiggus of Willmage (the ratio of the major radius to the
that make them suitable for geometric modeling and 3Rinor radius is 2) and the images of this torus by an
representation, their use in the nowadays modeling top{gersion i.e. cyclides of Dupin. Topological genus of
is not yet considered. The conversion of Dupin CyC”ngese two surfaces is since it is necessary to add a han-
into commonly used 3 D representation surfaces, suchg@sto the sphere to obtain a surface equivalent to the one
rational biquadratic Bézier parametric surfaces, isg¢hepf these two surfaces [13]. In 1965, Willmore conjec-
fore necessary and it also is discussed in this paper. MYeed that directional surfaces of kind 1 having an axis
show examples of entire or part of liposome representgdsymmetry whose energy of curvature is weakest, are
as Dupin cyclides together with their Bezier conversionthe torus of Willmore [21] and its images by inversion.
This result was checked in experiments. The 3D repre-
entation of liposomes needs the use of two primitives:
pheres and Dupin cyclides (a torus is a particular Dupin
cyclide). Moreover, some particular Dupin cyclides are
double spheres. So, Dupin cyclides seem to be suf cient
1 Introduction to represent all the possible forms of liposomes.

Except the quadrics [4] and the tori of revolution [4],
Since A. Bangham discovered liposomes about 30 yeatsfaces available in the modelers are parametric surfaces
ago, these have been used in several domains as biolsggh as NURBS, B-Splines and Bézier [5, 15, 9], but
biochemistry and medicine [14]. They can play the roBupin cyclides are not proposed. Dupin cyclides are al-
of drug carriers and can be charged of a large varietyge#braic surfaces introduced for the rst time in 1822 by
molecules: small drug molecules, proteins, nucleotidé® French mathematician Pierre-Charles Dupin [8]. They
and plasmids. This method permits to introduce a gelnave a low algebraic degree: at mdstLiposomes can
of interest in a cell. Indeed, Dr. Xiaoyang Qi at thbe modelled by quartic Dupin cyclides. These Dupin cy-
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clides have a parametric equation and two equivalent im-Let O be the center and the radius of a circleC in
plicit equations [10, 7] and they have been studied byaaplaneP. Let be a straight line such & does not
several mathematicians [6, 7, 4]. Recently, a numberlmlongto . The torus of revolution, gure 1, is produced
authors used them in Computer Aided Geometric Desiday, rotating the circleC, called meridian [4], about the axis
examples of such works are: Their use for the blending Inthe pland®, let be the intersection betweenand

of quadrics [16, 17, 2, 3]; Their representation as Ratio~, its perpendicular straight line passing throu@hSo,
nal Biquadratic Bézier Patches (RBBPs) [16, 20, 1, 12ftP, and Care the axis of the reference system. Let

Their NURBS conversion [22]. R = O, theequationo€isy( )=(R+ r cos ) and
This paper is organized as follows: section 2 presemt§ ) = r sin and the parametric equation of the torus is:

the needed mathematical background (RBBP, torus of 0 1

Willmore, inversion, Dupin cyclides). Section 3 presents (R+rcos )cos

the conversion of Dupin cyclides into RBBPs using an al- 7(; )= @(R+rcos)sin A )

gorithm proposed by Pratt [16]. Section 4 presents two r sin

new conversion algorithms. Section 5 presents the con- p_

clusion. where 2[0;2 ], 2[0;2].IfR=r 2 thetorusis

called Willmore torus.

2 Background
2.3 Inversion
2.1 Rational Biquadratic Bézier Patches

(RBBP) Let E be the af ne space, a point belonging td, k
a number not equal tb. An inversion is an application
The three Bernstein polynomial of degreare: il\/l:(F f. ('\% )! (l)E f g[16]de nedby:8M 2E f g,
=
Bi)=Gt (1 1°' (1)
MOl M=k e MOz X 'm @
wherei 2 [0;2] A pointM (u;v), (u;v) 2 [0;1F on a h M2

RBBP is given by:
2.4 Quartic Dupin cyclides

N ,
Bij (U;V)Opij
| P
"OM (u;v) = I_O>éz_0><z ) i 1
Bij (u;v)
i=0 j=0

where(Pj ), ij o are control points(w; ), ij o are

) Figure 2: Three kinds of Dupin cyélides. Left: rin@,
weights andBj; (u;Vv) = w; B (u) Bj (v) [16].

ig J j J &. Middle: horned0 < j j j ¢ < ja.
Right: half spindlep j ¢ j aj<]j j.
2.2 Torus of Willmore

It is possible to de ne Dupin cyclides in various equiv-
alent ways: Liouville showed that a Dupin cyclide is the
image of a cone of revolution or a torus of revolution or
a cylinder of revolution under an inversion; A Dupin cy-
clide is the envelope of spheres centered on a given conic
and orthogonal to a given xed sphere, called sphere of
inversion: the latter is centered on the focal axis of the

Fi&ure 1: Atorus of



Dupin cyclide [6, 7]; A Dupin cyclide is the envelope surequation

face of a set of spheres, the centigrsof which lies on a 0

given conic with focu$-, and the radius of which is such (c acos cos )+ P cos

that the distancEM + R is a given constant (this de ni- a ccos cos

tion is due to Maxwell); A Dupin cyclide is the envelope a(; )= bsin (a cos ) (5)
surface of the spheres tangent to three given xed spheres "’ a Cccos cos

[8]. bsin (ccos )

a CCos cos

where 2[0;2 ], 2][0;2 ]

T OO .

Figlire 3= Left. Three medica images of Liposomes.
Right: Liposomes modelled with Willmore torus an
Dupin cyclide

Conversion of Dupin cyclides into RBBP

(iin this section, the parameteas c and of the Dupin
cyclide and the bounds, o, o and ; of the part of
the Dupin cyclide to convert are given.

Quartic Dupin cyclides depend on three independentCurves plotted on a RBBP with one variabler v con-
parameterﬁl, cand with jg j aj. Itis convenientto stantare conics. The lines of curvature of Dupin cyclides
deneb= " a2 c2. According to the parameter valuesare particular conics: circles. So, itis possible to cotaer
there are three kinds of Dupin cyclides: ring, horned apdrt (region) of a Dupin cyclide into a RBBP. This partis
spindle, gure 2. The'-offset of a Dupin cyclide which de ned by four lines of curvature: , : 7! 4( o; ),
parameterg, cand is a Dupin cyclide which parameters |, : 7! 4(1; ), o, 7' 4(; o), ,: 7!
a,cand + " [19]. d(; 1). To this end, we have to compute nine control

oints(Pj ), ;i , andthe nine weight&wjj ), .. »-

Except the torus of Willmore, the other adjustable sue— Sevérgl)%olﬁvezrsion algorithms ﬁa\tiv"b)eoer']” przesented:
faces with a topological genus equallichaving a weak- k- yeda uses matrix and resolve systems of linear
est energy of curvature, are the images of Willemore toré'&uations [20]. G. Albrecht converts a piece of a cone
under an inversion i.e. they are particular Dupin cyclidesy reyolution into RBBP. The image of this RBBP is an
gure 3. This result was checked in experiments in thegpp representing a piece of symmetric horned Dupin
forms taken byllposomes, gure 3 (Ieft): Figure 3 (r'ghtl:yclide ( =0 andc 6 0). The kind of the Dupin
shows 3D representations of two two liposomes USiNGGclide can be modied by taking A-offset of Dupin
Willmore tgrgs and a Dupin cyclide. The radii of the toruéyclide [1]. Some examples of results can be found on
areR = 4" 2andr = 4. The Dupin cyclide is the im- gjse.  htp:/vww.univ-valenciennes. fr/
age of this torus under an inversion, the coordinates of %eo\cs/caomacs/dupin.htm . We have developed
center arg1; 0; 0) and the rapport ik = 8. Dupin pa- g algorithm that uses barycentric properties of Dupin
rametergiarea = 42 422, = 2" 3;38and cyclides and the Bézier representations of circular arcs
C= 251%12 ' 2:25. The values of parametess c and [12]. In this paper, we consider in more details the

are computed using two principal circles of the Dupigonversion algorithm presented by M. Pratt in [16]. We
cyclide [16, 11]. show and discuss some results of this algorithm with
Two equivalentimplicit equations of a Dupin cyclide werpossible improvements.
obtained by Darboux early in the last century by comput-
ing the implicit equation of the envelope of the spheresin this algorithm, the coordinates of control points and
de ning the Dupin cyclide [7]. The same results are alsgeights are calculated directly from the parametric equa-
given by Forsyth [10]. A Dupin cyclide has a parametriton of the Dupin cyclide, equation (5), and from the




bounds g, ¢, ¢ and 1. In fact, M. Pratt writes cir-

" . . 2
cular functions as rational fractionsds = L—Eg and

sin = %) in using trigonometric relations:

tan? L _ 5 6 Figure 4: Wrong conversion of a piece of liposome into
1+tan? - ' sin() 1 +tan?2 5 (6) RBBP,j ¢ 1j > . Left: Dupin cyclide. Right: Dupin

: . . __cyclide and RBBP,
where 2 R Z. To determine the nine control points

(Pj)o ij 2 and the nine weightgwjj ), ;; ,. he de-
nes the numbers: computed as ifg = % and ; = 0, which does not

N

cos()=

g =tan — g = NT® g =tan —= allow to obtain the right conversion. So, the conditions
2 2 2 .
ho=tan -2 ho =tan —% hy = M are. . . . .
0 2 2 2 ! 2 @ Jo 1)< and j o 1< (11)
- 2 0 - - 2 1 .. . .
Go=tan = — G1=0 @& G:=tan® — The non-observance of the constrging 1j < is
Ho = tan 2 70 Hi=hy h, Hp=tan2? —- showed by gure 4. On the left picture, one can see the

_ . . patch of Dupin cyclide. On the right picture, one can
Immediately, we note that is a forbidden value. For see the Dupin cyclide patch and its wrong correspond-
@i;7) 2 [0; 2]]2, let bePy = ﬁpij where: ing RBBP. In fact, the RBBP is the complementary of
0 ? fwe A 1 the Dupin cyclide patch (for the value3. However, it
1 G 1 G 1 H . .
5 e %1rc 13 HJ_ + is now possible to take valueg, 1, o and 1 such
' ' ! as 2 ]o; 1fandlor 2 ] o; 1i[. Indeed, a piece

op T a L Hi of liposome, gure 3, is converted into RBBP, gure 5.
B = 1+ G 1+ Hj () The bounds of the piece areg =0, 1= 3, 0= 3
1 G h, and 1 = %-. Left picture shows the Dupin cyclide and
2b ¢ G 1+ H; the piece to convert. Pratt's algorithm produces a wrong

RBBP, middle picture, whereas the new algorithm gives a
and the weighty; is given by: correct conversion, right picture. So, it is now possible to
convert some new liposomes pieces.
Wi = a(1+ Gi)(1+ Hj) C(l Gi)(l Hj) (9)

The trigonometric values of angles, 1, oand ; are
used to determine the elements of the equation (7), which
are thereafter introduced into the formula (8) to obtain
the coordinates of control points, and into formula (
to obtain weights. In case ong = % and ;| = 7,
the discontinuity of the functiox 7! tan % in
modulo2 makes that weights and control points will b
calculated asifo = % and ; = %, which makes it

impossible to obtain the correct conversion [12].

%igure 5: Conversions of a piece of liposome into RBBP.
Left: Dupin cyclide. Middle: conversion using Pratt's

algorithm. Right: conversion using a variant of Pratt's
Qlgorithm.

For each variable and , conditions of formula (11)
. . imply that at least three values are necessary. So, to rep-
b Ol?e_ W‘?y :okde?rll W'tTJ thletabovle mgnt[[cr)]ned d_rar‘?’ésent a complete Dupin cyclide, at least nine RBBPs are
ack 1S fo faxe e absolute va ue in_the _We'_g F]Secessary. Figure 6 shows two examples of conversion.
computation formula as follows (fofi;j) 2 [0; 2: Of course, the problem with remains. So, it is not
. _ possible to use this algorithm to convert some Dupin cy-
wij =ja(l+ G+ Hj) c@ Gi)I Hji (10) clides carrying outa blending between a plane and a cylin-
Moreover, if ¢ = 0 and 1 = 4, control points are der of revolution. For this reason, we have to present the



Figure 6: A liposome converted into RBBPs. Left: DupiI':_Ligure 7: Conversion of a part of liposome into RBBP
cyclide. Middle: sixteen RBBPs. Right: nine RBBPs. Lo . .
y g by applying item 1 of theorem 1. Left: Dupin cyclide

representing the part. Right: the computed RBBP.
following algorithm.

Two conversions of a part of liposome ( gure 3), into
RBBP, which were impossible until now, are shown on
gures 7 through 9. First, gure 7, the Pratt's algorithm

is applied using item 1. The bounds of the liposome piece
Until now, the parameterg, c and of Dupin cyclides are.pp _ 3 g P P

— — 2 -
have always been positive. In this section, parameters ~ ° 4’ '~ %7 73" and 1= 5.
andc can be negative. Theorem 1 gives the af ne transfor-
mation to apply when we modify the sign ofand/or .
The conversion algorithm proposed here is based on the
Pratt's algorithm discussed in the previous section. Using
the new method, the conversion can be done in three steps:
re-parametrization of the Dupin cyclide; use for Pratt's al
gorithm; choice of the appropriate af ne transformationFigure 8: Conversion of a part of liposome into RBBP by
applying item 3 of theorem 1. Left: Dupin cyclide. Right:
Theorem 1 : RBBP.

LetS be a Dupin cyclide with positive parametexsc
and . LetS; (respS ) be the Dupin cyclide obtained by
replacingc with ¢ (resp. with ). In the same way,
S¢. is the Dupin cyclide with parametess cand

Letf, (' q) (resp. f, (' ¢)) be the surface obtained by
the re-parametrization 7!+ (resp. 7! + ).

Letf ( q) (resp.‘c (' ¢)) be the surface obtained by
the re-parametrization 7! (resp. 7! ).
Letr, (resp. ry) be the rotation by around the

axis O!; ko (resp. (O'*,|0)). Let s, (resp. sx) be

4  Re-parametrisation and af ne transfor-
mation

Second, gure 8, the Pratt's algorithm is applied using
item 3. The bounds of the part of liposome age= 7,
1=0, o= and 1= Zz-

the re exion compared with the pIaneO!; {o!; ko (resp. Figure 9: Conversion of a liposome into fours RBBPs.
P! Left: Dupin cyclide. Right: RBBPs.
O;]oiko ). Then:

— f - f
1.S8=rz 1+ (S) andS= s (Se) - Moreover, it is possible to convert a complete liposome

2.8 = s f. f(s) and S = using a combination of algorithms, gure 9. The bounds
¢ of the part of liposomearey = 2-, 1= &, o= 3.
ry (S) . and ; = 2-. S; is obtained by using Pratt's algorlthm

S, (resp. Sz, S4) is obtained by using the second im-

3.5= 1+ (S )andS = s, (Se: ) - provement, item 2 (resp. item 3, item 1).



5 Conclusion [11]

To make 3D representations of liposomes with classical
modelers, we have studied the use of Dupin cyclides

some examples of theses representations are shown. HLRJE

conversion of Dupin cyclides into RBBPs simpli es the
use of the proposed representations in common geometric
modeling tools, we have discussed two conversion algo-
rithms and given two illustrating conversion results.  [13]
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