Measurement of three-dimensional mirror parameters by polarization imaging applied to catadioptric camera calibration

Olivier Morel
Ralph Seulin
David Fofi
Institut Universitaire de Technologie Le Creusot
Laboratory of Electronics, Computer Science and Image
Unités Mixtes de Recherche Centre National de la Recherche Scientifique 5158
Le Creusot, Burgundy 71200, France
E-mail: olivier.morel@u-bourgogne.fr

Abstract. We present a new efficient method for calibration of catadioptric sensors. The method is based on an accurate measurement of the three-dimensional parameters of the mirror through polarization imaging. While inserting a rotating polarizer between the camera and the mirror, the system is automatically calibrated without any calibration patterns. Moreover, this method permits most of the constraints related to the calibration of catadioptric systems to be relaxed. We show that, contrary to our system, the traditional methods of calibration are very sensitive to misalignment of the camera axis and the symmetry axis of the mirror. From the measurement of three-dimensional parameters, we apply the generic calibration concept to calibrate the catadioptric sensor. We also show the influence of the disturbed measurement of the parameters on the reconstruction of a synthetic scene. Finally, experiments prove the validity of the method with some preliminary results on three-dimensional reconstruction. © 2008 SPIE and IS&T. [DOI: 10.1117/1.2958290]

1 Introduction

Conventional perspective cameras have limited fields of view that make them restrictive in some applications such as robotics, video surveillance, and so on. One way to enhance the field of view is to place a mirror with a surface of revolution in front of the camera so that the scene reflects on the mirror omnidirectionally. Such a system, comprised of both lenses (dioptric) and mirrors (catoptric) for image formation, is called catadioptric. Several configurations exist, those satisfying the single-viewpoint constraint are described in Ref. 1.

Catadioptric vision systems available on the market have been extensively studied. Commercial devices are not adapted to our requirements, because optical components need to be placed between the camera and the mirror. Mirrors have therefore been produced in our own facilities thanks to the Plateform3D Department. A high-speed machining center has been used to produce a very high-quality surface, which is polished after production.

We developed a new approach for calibrating catadioptric sensors by polarization imaging. This method enables the calibration of any mirror shape, since it is based on the measurement of three-dimensional parameters such as height and normal orientations of the surface. The only constraint is that an orthographic camera has to be used. To calibrate the system, we apply the generic calibration concept developed by Ramalingam and Sturm. The paper is structured as follows. Section 2 recalls previous work on paracatadioptric calibration, since the measurement of the surface normals by polarization imaging induces orthographic projection, and most of the calibration methods developed for catadioptric systems rely on the single-viewpoint constraint. We show the misalignment sensitivity of these methods for the reconstruction of a synthetic scene. Then, after presenting some basic knowledge about polarization imaging, we detail in Section 3 how to calibrate the sensor with the generic calibration concept. In Section 4, we present simulations to illustrate the influence of the parameter measurement on the quality of the reconstruction. Preliminary results on a calibrated spherical mirror are also described. The paper ends with a conclusion and a few words about future work.

2 Calibration of Catadioptric Cameras

2.1 Previous Work

The most obvious calibration method that can be used is an approach based on the image of the mirror’s bounding circle. It has the main advantage of being easily automated, but the drawbacks are that the surface mirror has to be very accurate and the mirror boundary has to accurately encode the intrinsic parameters. Other self-calibration methods can be found. Another approach of calibrating catadioptric sensors is to use geometric invariants on the image such as lines or circles. Finally, the sensor can also be calibrated by using some calibration patterns with control points whose 3D world coordinates are known.
Since our approach requires a telecentric lens, we recall some methods devoted to paracatadioptric camera calibration (the single-viewpoint constraint involves a telecentric lens and a paraboloidal mirror). In this case, the more robust methods are based on the fitting of lines projected onto the mirror. This approach also has some shortcomings: Lines have to be precisely detected and the optical axis of the camera is assumed to be aligned with the symmetry axis of the paraboloid. To illustrate the misalignment effect, the three-dimensional reconstructions of a synthetic scene based on calibrations using the three preceding methods are simulated (Fig. 1).

The scene represents a room of size 500 × 500 × 250 cm with elements such as windows, doors, and a table. Three images of the catadioptric sensor are used to triangulate the points of the scene. For the calibration process, 20 lines are computed and perfectly detected on the mirror. Then the calibration parameters are used to reconstruct the scene, according to the linear-eigen method. As presented in Fig. 2, the misalignment of the paracatadioptric system leads to the introduction of an important error on the reconstruction even if the calibration is performed with perfect line fittings.

To deal with the alignment errors between the mirror and the lens, more sophisticated algorithms were introduced. The calibration process in Refs. 20 and 21, which requires a large number of parameters to estimate, involves a three-step algorithm in order to compute all the extrinsic and intrinsic parameters. Ieng and Benosman proposed a more flexible solution based on caustic curves. The main advantage of this method is that it is applicable for every surface of revolution. In order to relax constraints on the mirror shape, the method presented here is based on the generic calibration concept: It leads to a flexible, easy-to-perform, and shape-independent method of calibration.

2.2 The Generic Calibration Concept

The previous calibration methods for omnidirectional cata-
dioptric sensors assume that (1) the mirror shape is perfectly known, (2) the alignment of the sensor is perfect, so that the single-viewpoint constraint is satisfied, and (3) the projection model can easily be parameterized. Some methods relax the second constraint and a few relax the first one, but prior to recent work, calibrating methods always underlied an explicit parametric model of projection. This

![Fig. 1 Simulation of the three-dimensional reconstruction. The theoretical scene, in blue, represents a room with elements such as windows, door, and table; black dots depict the sensor's three locations. The reconstructed scene with the Vanderportaele calibration method (a 2° misalignment) is drawn in red.](image1)

![Fig. 2 Reconstruction error induced by the misalignment between camera’s optical axis and the paraboloid’s symmetry axis. Calibration methods used are from Geyer, Barreto, and Vanderportaele. (The size of the room is 500 × 500 × 250 cm.)](image2)
new model has the advantage of working for any type of camera (catadioptric systems, central cameras with or without distortion, axial cameras, etc.) and of handling heterogeneous systems\(^2\) (for instance, a sensor composed of an omnidirectional camera and a perspective camera). However, developing an efficient and easy-to-use calibration method based on this model is not trivial. Our proposed new method enables catadioptric sensor calibration by polarization imaging. It relaxes the three constraints listed above, and the calibration can even be performed by a non-specialist, as it only requires an optical apparatus and no image processing.

3 Polarization Imaging

Polarization imaging enables the study of the polarization state of a light wave. The most common applications in artificial vision involve segmenting dielectric and metallic objects\(^2^4\) and detecting transparent surfaces. Polarization imaging likewise enables three-dimensional information of specular objects to be detected (the “shape from polarization” method\(^2^5,2^6\)). The physical principle behind “shape from polarization” is the following: After being reflected, an unpolarized light wave becomes partially linearly polarized, depending on the surface normal and the refractive index of the media on which it impinges. Partially linearly polarized light has three parameters: the light magnitude \(I\), the degree of polarization \(\rho\), and the angle of polarization \(\varphi\).

To calibrate the mirror used in our catadioptric sensor, the polarization state of the reflected light has to be measured. A rotating polarizer placed between the camera and the mirror is used. The complete sensor (mirror and camera) and the polarizer are placed into a diffuse light environment composed of a backlit cylindrical diffuser (Fig. 3). The light intensity of each pixel is linked to the angle of the polarizer and to the polarization parameters by the following equation:

\[
I_p(\alpha) = \frac{I}{2}(\rho \cos(2\alpha - 2\varphi) + 1),
\]

where \(\alpha\) is the polarizer angle. The purpose of polarization imaging is to compute the three parameters \(I, \varphi,\) and \(\rho\) by interpolating this formula. Because three parameters need to be determined, at least three images are required. Images are taken with different orientations of the polarizer. To get an automatic calibration of the catadioptric system, a liquid crystal polarization rotator is used instead of the polarizer. It acts as a rotating polarizer, which has the ability to be electrically controlled. Figure 4 shows an image of the degree and the angle of polarization of a spherical mirror.

3.1 The Relationship Between the Polarization Parameters and the Normals

Wolff and Boult demonstrated how to determine constraints on surface normals using the Fresnel reflectance model.\(^2^7\) The surface of the mirror is assumed to be continuous and described by a Cartesian expression: \(z = f(x, y)\). Therefore, each surface normal is given by the following nonnormalized expression:
The aim of the “shape from polarization” technique is to compute the normals from the angles θ and ϕ. By combining the Fresnel formulas and the Snell–Descartes law, one can find a relationship between the degree of polarization p and the zenith angle θ.

For specular metallic surfaces, the following formula can be applied:28

$$\rho(\theta) = \frac{2n \tan \theta \sin \theta}{\tan^2 \theta \sin^2 \theta + |\hat{n}|^2},$$ \hspace{1cm} (3)

where $\hat{n}=n(1+i\kappa)$ is the complex refractive index of the mirror. In the case of a perfect specular mirror, Eq. (3) can be directly used if the complex refractive index of the material is known. However, if the refractive index is unknown or if the mirror is not perfectly specular, a pseudo-refractive index29 can be applied. This consists of estimating a pseudo-refractive index that best fits the relation between the angle θ and the degree of polarization p measured on a known shape of the same material. Finally, this pseudo-refractive index, which has no physical meaning, enables the degree of polarization image of the new object to be computed using the same relation Eq. (3).

The azimuth angle ϕ is linked to the angle of polarization φ since the reflected light becomes partially linearly polarized according to the normal of the plane of incidence. Because our imaging system uses a telecentric lens, an orthographic projection onto the sensor is assumed and the azimuth angle ϕ can be inferred from the angle of polarization φ according to the following equation:

$$\phi = \varphi \pm \frac{\pi}{2}.$$ \hspace{1cm} (4)
3.2 Disambiguation of the Normals

From Eqs. (3) and (4), the surface normals are determined with an ambiguity. Since mirrors used in catadioptric vision are convex and of a revolution shape, a segmented image I_{quad} can be directly computed from the near center of the mirror [Fig. 5(a)]. This segmented image is an image with four gray levels that represent the four quadrants oriented with an angle in $]0, \pi/2[$. The algorithm of the disambiguation process described in Ref. 29 is applied with the segmented image I_{quad} and with the angle of polarization image φ. The azimuth angle ϕ is computed as follows:

1. $\phi = \varphi - \pi/2$,
2. $\phi = \varphi + \pi$ if $[(I_{\text{quad}}=0) \land (\phi \leq 0)] \lor [I_{\text{quad}}=1] \lor [I_{\text{quad}}=3) \land (\phi > 0)]$,

where \land and \lor represent, respectively, the logical operators AND and OR. The result of the disambiguation is presented in Fig. 5(b).

![Fig. 8](image)

Fig. 8 Three-dimensional parameters used. (a) Normals θ, ϕ, and surface height z; (b) only normals θ, ϕ (without integration process).

![Fig. 9](image)

Fig. 9 Reconstruction error induced by noisy calculation of the mirror height z.

![Fig. 10](image)

Fig. 10 Measurement errors of the three-dimensional parameters. (a) Angle θ; (b) angle ϕ; and (c) deviation map of the mirror z.
3.3 Calibration

To calibrate our imaging system, we use the generic calibration concept introduced by Sturm and Ramalingam. The concept considers an image as a collection of pixels, and each pixel measures the light along a particular 3D ray. Thus, calibration can be seen as the determination of all projection rays and their correspondence with pixels. A 3D ray is represented here by two points \(\mathbf{A} \) and \(\mathbf{B} \) that belong to the ray. The points’ coordinates are defined as described in Eq. (5):

\[
\begin{bmatrix}
 x_a \\
 y_a \\
 z_a
\end{bmatrix}, \quad \begin{bmatrix}
 x_b \\
 y_b \\
 z_b
\end{bmatrix}
\]

To calibrate the sensor, let us take point \(\mathbf{A} \), which belongs to both the mirror surface and the 3D ray, to be the first point of the ray (Fig. 6). Since an orthographic projection is assumed, the \(x_A \)- and \(y_A \)-coordinates can be directly deduced from the \((u, v) \)-coordinates of each pixel (up to a scale factor given by the lens). Finally, the computation of the \(z_a \)-coordinate requires the determination of the 3D mirror surface. The 3D surface of the mirror can be computed from the normals (given by polarization imaging) thanks to the Frankot–Chellappa algorithm. Denoting the Fourier transforms of, respectively, the surface height and the \(x \), \(y \) gradients as \(\tilde{f} \), \(\tilde{p} \), and \(\tilde{q} \), we have

\[
\forall (u, v) \neq (0, 0), \quad \tilde{f}(u, v) = \frac{-j u \tilde{p} - j v \tilde{q}}{u^2 + v^2}.
\]

The three-dimensional surface is obtained by taking the inverse Fourier transform of the former equation. This integration process gives us the surface height of the mirror with a constant of integration. Nevertheless, this constant is not required, because of the orthographic projection assumption.

As shown in Fig. 6, the second point \(\mathbf{B} \) of the ray can be written as

\[
\begin{bmatrix}
 x_b \\
 y_b \\
 z_b
\end{bmatrix} = \begin{bmatrix}
 x_a \\
 y_a \\
 z_a
\end{bmatrix} + k \begin{bmatrix}
 \tan 2\theta \cos \phi \\
 \tan 2\theta \sin \phi \\
 1
\end{bmatrix},
\]

where \(k \) is a nonnull constant.

4 Experiments

In the previous section, we showed that the three-dimensional parameters of the mirror, \(\theta \), \(\phi \), and \(z \), are required to calibrate the catadioptric system, according to the generic calibration concept introduced by Sturm. The azimuth and zenith angles, \(\phi \) and \(\theta \), are directly given by the measurement of the polarization parameters \((\rho, \varphi) \) of the light reflected by the mirror. The surface height \(z \), which represents the 3D shape of the mirror, is obtained by an integration process.

In this section, simulations are presented to illustrate the influence of the parameters on reconstruction quality.
Fig. 12 Three-dimensional reconstruction of a real scene with the catadioptric system. (a) Experimental setup; (b)–(d) points of interest.

Fig. 13 Results of the three-dimensional reconstruction. Reconstruction according to the linear-eigen and midpoint methods are respectively drawn in red and blue, while the gray points represent the sensor’s 3 positions.
preliminary results on a calibrated spherical mirror show the good accuracy of the three-dimensional parameters measurement by polarization imaging. Experiments on the reconstruction of a real scene are also presented.

4.1 Simulations

To simulate the three-dimensional reconstruction error, the synthetic scene introduced in Section 2 (Fig. 1) is reconstructed thanks to the generic calibration concept. The normals’ angles θ and ϕ were computed from a perfect parabolic mirror with a 7° misalignment between the optical axis and the symmetry axis of the mirror. The parameters are then disturbed by adding various levels of Gaussian noise. At each level of noise, the experiment is regenerated 50 times, and the average error reconstruction is computed. Figures 7(a) and 7(b), respectively, show the reconstruction error of the scene induced by noisy measurement of θ and ϕ. The synthetic scene is reconstructed with or without mirror reconstruction, depending or whether or not the integration process from Eq. (6) is carried out (Fig. 8).

Figure 7 shows that scene reconstruction is quite sensitive to the measurement of the parameters θ and ϕ; on the other hand, the integration process is not required, and we can assume that the z parameter is negligible. In addition, Fig. 9 shows the reconstruction error of the scene by only adding Gaussian noise to the mirror height z. In this case, the normals are assumed to be perfectly measured and noise is only added on the surface height of the mirror. The reconstruction quality remains good even if the mirror height is very noisy (the mirror height is 1 cm and the radius is 2 cm) or badly reconstructed.

4.2 Preliminary Results

4.2.1 Simulated scene

Preliminary results were carried out with a catadioptric sensor made of a camera with a telecentric lens and a calibrated spherical mirror (radius=1 cm). Let us notice that our system does not satisfy the single-viewpoint constraint. Nevertheless, this property is not required here for the three-dimensional reconstruction of the scene. As described in Section 3, our catadioptric sensor is calibrated by measuring the three-dimensional parameters of the mirror with a liquid crystal polarization rotator placed between the camera and the mirror. To evaluate the accuracy of our system, we compare the parameters (θ, ϕ, and z) obtained with our system to the theoretical parameters of the mirror (Fig. 10).

The mean quadratic errors of the angles θ and ϕ are, respectively, 0.49° and 1.02°. Figure 11 shows the reconstruction of the synthetic scene by using the calibration made by polarization imaging. Since the mirror is spherical, three-dimensional reconstruction errors greatly increase. Nevertheless, the synthetic science is well reconstructed, with an average error of 9.68 cm.

4.2.2 Real scene

As presented in Fig. 12, the three-dimensional reconstruction of a real scene was also carried out. The imaging system is made of a CCD camera with a telecentric lens and a spherical mirror. In order to precisely control its displacement, it has been placed on a precise three-axes stage. The $x \times y \times z$ operating area is $1.5 \times 1.6 \times 0.4$ m, and the $x \times y \times z$ room size to reconstruct is about $6 \times 5 \times 2.5$ m. After calibrating our catadioptric sensor by polarization imaging, 3D points of interest have been triangulated by moving the system.

Once the imaging system is automatically calibrated by polarization imaging, three images with three different known positions have been acquired. Several points of interest were picked on each image: four rectangular targets, two edges of the ceiling, three windows, and one fluorescent light [Figs. 12(b)–12(d)]. The result of the triangulation process presented in Fig. 13 shows that the reconstruction is qualitatively satisfactory. The global topology of the scene and the relative distances are respected; right angles appear as (near-) right angles. In fact, the overall reconstruction is as expected, considering

- the small displacement of the sensor in comparison with the size of the scene,
- the fact that we only performed linear triangulation without refinement, and
- the reconstruction also depends on the accuracy of point picking (the correspondence has been established manually and a slight error in the location of 2D points led to erroneous 3D reconstruction).

5 Conclusion

We presented, a new efficient calibration method for catadioptric sensors. This method is based on the measurement of three-dimensional parameters of the mirror thanks to polarization imaging. The calibration can be performed “in one click” even by a non specialist, because it only requires an optical apparatus—no image processing and no calibration pattern. Contrary to traditional methods, it deals with misalignment of the sensor and works for any shape mirror (regular or not). Experimental results prove that the sensor is properly calibrated and a satisfactory three-dimensional reconstruction of the scene can be obtained. We have also shown that the 3D shape of the mirror can be neglected in comparison with the normals’ orientations. The Plateform3D Department is currently manufacturing a parabolic mirror, and future work will consist of creating a paracatadioptric sensor in order to compare our method to other methods known in the literature for real scenes.

References

Olivier Morel received his MSc degree in computer vision and image processing from the University of Burgundy in 2002. In November 2005, he received his PhD degree in computer vision from the University of Burgundy. Since September 2007, he has worked as a lecturer in the 3D vision team of the Le2i Lab. His main research interests are polarization imaging, 3D vision and catadioptric vision.

Ralph Seulin received his PhD degree in computer vision from the University of Burgundy in 2002. He is a research engineer at the National Center for Scientific Research (CNRS) in the Le2i Laboratory. His main research interests include machine vision for industrial parts inspection and 3D digitization automation. He also manages industrial projects for machine vision applications in the nuclear industry.

David Fofi received his MSc degree in computer science (computer vision, signal and image processing) in the University of Cergy-Pontoise, ENSEA, in 1997. In September 2001, he received his PhD degree in robotics and computer vision from the University of Picardie Jules Verne. Since September 2002, he works as a lecturer in the Le2i Lab where he became head of the 3D vision team in 2007. His main research interests are 3D vision, projector-camera systems, structured light and catadioptric vision.